	বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper
	B.Sc. Honours Examinations 2020 (Under CBCS Pattern) Semester - I Subject: MATHEMATICS Paper: C 1-T
	Full Marks : 60 Time : 3 Hours
	Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
	Answer any three from the following questions : 1. (a) Evaluate the following limits: $\lim _{x \rightarrow 0} x \ln (\sin x)$ in $(0, \pi)$. (b) Show that the four asymptotes of the curve $\left(x^{2}-y^{2}\right)\left(y^{2}-4 x^{2}\right)+6 x^{3}-5 x^{2} y-3 x y^{3}+2 y^{3}-x^{2}+3 x y-1=0$ cut the curve in eight points which lie on the circle $x^{2}+y^{2}=1$. (c) Prove that the envelope of a variable circle whose centre lies on the parabola $y^{2}=4 a x$ and which passes through its vertex is $2 a y^{2}+x\left(x^{2}+y^{2}\right)=0$

(d) What are the points of inflection of the function $f(x)=3 x^{4}-8 x^{3}$.

4
2. (a) What do you mean by rectillinear asymptotes to a curve?
(b) Find the equation of the envelope of the family of curve represented by equation $x^{2} \sin \alpha+y^{2} \cos \alpha=a^{2}$.
(c) If $y=\left(\sin ^{-1} x\right)^{2}$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$. Also find $y_{n}(0)$.
(d) Find the asymptotes of the curve $(x+y)(x-2 y)(x-y)^{2}+3 x y(x-y)+x^{2}+y^{2}=0$.
3. (a) If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x, n>2$ then prove that $(n+1) I_{n}+(n-1) I_{n-2}+\frac{1}{n}=\frac{\pi}{2}$.
(b) Determine the length of one arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
(c) Find the reduction formula for $\int \sin ^{m} x \operatorname{Cos}^{n} x d x$ where either m or n or both are negative integers. And hence find $\int \frac{\cos ^{4} x}{\sin ^{2} x} d x$.
(d) Find the whole length of the loop of the curve $9 a y^{2}=(x-2 a)(x-5 a)^{2}$.
4. (a) Find the eccentricity and the vertex of the conic $r=3 \sec ^{2} \frac{\theta}{2}$.
(b) Find the polar equation of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
(c) A sphere of radius k passes through the origin and meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the locus of the centroid of the triangle ABC is the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
(d) Show that the plane $y+6=0$ intersects the hyperbolic paraboloid $\frac{x^{2}}{5}-\frac{y^{2}}{4}=6 z$ in parabola.
5. (a) For what angle must t he axes be turned to remove the term x^{2} from $x^{2}-4 x y+3 y^{2}=0$.
(b) Find the centre and the radius of the circle $3 x^{2}+3 y^{2}+3 z^{2}+x-5 y-2=0$, $x+y=2$.
(c) P is a variable point such that its distance from the xy-plane is always equal to one fourth the square of its distance from the y-axis. Show that the locus of P is a cylinder.
(d) Reduce the equation $7 x^{2}+y^{2}+z^{2}+16 y z+8 z x-8 x y+2 x+4 y-40 z-14=0$ to the canonical form and find the nature of the conicoid it represents.
6. (a) Solve : $\left(1+y^{2}\right) d x-\left(\tan ^{-1} y-x\right) d y=0$.
(b) Find the singular solution of $x p^{2}-(y-x) p-y=1$.
(c) Solve and find the singular solutions of $p^{4}=4 y(x p-2 y)^{2}$.
(d) Solve: $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.

